Elasticsearch入门简介

前言

Elasticsearch 是一个建立在全文搜索引擎 Apache Lucene(TM) 基础上的搜索引擎,可以说 Lucene 是当今最先进,最高效的全功能开源搜索引擎框架。

Elasticsearch是一个实时分布式和开源的全文搜索和分析引擎。 它可以从RESTful Web服务接口访问,并使用模式少JSON(JavaScript对象符号)文档来存储数据。它是基于Java编程语言,这使Elasticsearch能够在不同的平台上运行。使用户能够以非常快的速度来搜索非常大的数据量。

 Elasticsearch总体架构图:



1. ES 基础概念

1.1 ES定义

ES=elaticsearch简写, Elasticsearch是一个开源的高扩展的分布式全文检索引擎,它可以近乎实时的存储、检索数据;本身扩展性很好,可以扩展到上百台服务器,处理PB级别的数据。
Elasticsearch也使用Java开发并使用Lucene作为其核心来实现所有索引和搜索的功能,但是它的目的是通过简单的RESTful API来隐藏Lucene的复杂性,从而让全文搜索变得简单。

1.2 Lucene与ES关系?

1)Lucene只是一个库。想要使用它,你必须使用Java来作为开发语言并将其直接集成到你的应用中,更糟糕的是,Lucene非常复杂,你需要深入了解检索的相关知识来理解它是如何工作的。

2)Elasticsearch也使用Java开发并使用Lucene作为其核心来实现所有索引和搜索的功能,但是它的目的是通过简单的RESTful API来隐藏Lucene的复杂性,从而让全文搜索变得简单。

1.3 ES主要解决问题:

1)检索相关数据;
2)返回统计结果;
3)速度要快。

1.4 ES工作原理

当ElasticSearch的节点启动后,它会利用多播(multicast)(或者单播,如果用户更改了配置)寻找集群中的其它节点,并与之建立连接。这个过程如下图所示:
这里写图片描述

1.5 ES核心概念

1)Cluster:集群

ES可以作为一个独立的单个搜索服务器。不过,为了处理大型数据集,实现容错和高可用性,ES可以运行在许多互相合作的服务器上。这些服务器的集合称为集群。

2)Node:节点

形成集群的每个服务器称为节点。

每一个运行实例称为一个节点,每一个运行实例既可以在同一机器上,也可以在不同的机器上。

所谓运行实例,就是一个服务器进程,在测试环境中可以在一台服务器上运行多个服务器进程,在生产环境中建议每台服务器运行一个服务器进程。

3)Index:索引

形成集群的每个服务器称为节点。

Elasticsearch里的索引概念是名词而不是动词,类似于关系数据库里面每一个服务器可以支持多个数据库是一个道理,但是本质

上和关系数据库还是有很大的区别,我们这里暂时可以这么理解。

4)Shard:分片

当有大量的文档时,由于内存的限制、磁盘处理能力不足、无法足够快的响应客户端的请求等,一个节点可能不够。这种情况下,数据可以分为较小的分片。每个分片放到不同的服务器上。
当你查询的索引分布在多个分片上时,ES会把查询发送给每个相关的分片,并将结果组合在一起,而应用程序并不知道分片的存在。即:这个过程对用户来说是透明的。

5)Replia:副本

为提高查询吞吐量或实现高可用性,可以使用分片副本。
副本是一个分片的精确复制,每个分片可以有零个或多个副本。ES中可以有许多相同的分片,其中之一被选择更改索引操作,这种特殊的分片称为主分片。
当主分片丢失时,如:该分片所在的数据不可用时,集群将副本提升为新的主分片。

6)全文检索。

全文检索就是对一篇文章进行索引,可以根据关键字搜索,类似于mysql里的like语句。
全文索引就是把内容根据词的意义进行分词,然后分别创建索引,例如”你们的激情是因为什么事情来的” 可能会被分词成:“你们“,”激情“,“什么事情“,”来“ 等token,这样当你搜索“你们” 或者 “激情” 都会把这句搜出来。

1.6 ES数据架构的主要概念(与关系数据库Mysql对比)

这里写图片描述
(1)关系型数据库中的数据库(DataBase),等价于ES中的索引(Index)
(2)一个数据库下面有N张表(Table),等价于1个索引Index下面有N多类型(Type),
(3)一个数据库表(Table)下的数据由多行(ROW)多列(column,属性)组成,等价于1个Type由多个文档(Document)和多Field组成。
(4)在一个关系型数据库里面,schema定义了表、每个表的字段,还有表和字段之间的关系。 与之对应的,在ES中:Mapping定义索引下的Type的字段处理规则,即索引如何建立、索引类型、是否保存原始索引JSON文档、是否压缩原始JSON文档、是否需要分词处理、如何进行分词处理等。
(5)在数据库中的增insert、删delete、改update、查search操作等价于ES中的增PUT/POST、删Delete、改_update、查GET.

1.7 ELK是什么?

ELK=elasticsearch+Logstash+kibana
elasticsearch:后台分布式存储以及全文检索
logstash: 日志加工、“搬运工”
kibana:数据可视化展示。
ELK架构为数据分布式存储、可视化查询和日志解析创建了一个功能强大的管理链。 三者相互配合,取长补短,共同完成分布式大数据处理工作。

2. ES特点和优势

1)分布式实时文件存储,可将每一个字段存入索引,使其可以被检索到。
2)实时分析的分布式搜索引擎。
分布式:索引分拆成多个分片,每个分片可有零个或多个副本。集群中的每个数据节点都可承载一个或多个分片,并且协调和处理各种操作;
负载再平衡和路由在大多数情况下自动完成。
3)可以扩展到上百台服务器,处理PB级别的结构化或非结构化数据。也可以运行在单台PC上(已测试)

4)支持插件机制,分词插件、同步插件、Hadoop插件、可视化插件等。

2.1 ES核心机制

1)Recovery

        Elasticsearch 的recovery代表的是数据恢复或者叫做数据重新分布,当有节点加入或退出时时它会根据机器的负载对索引分片进行重新分配,当挂掉的节点再次重新启动的时候也会进行数据恢复。

2)River

        Elasticsearch 的river 代表的是一个数据源,这也是其它存储方式(比如:数据库)同步数据到 elasticsearch 的一个方法。 它是以插件方式存在的一个 elasticsearch 服务,通过读取 river 中的数据并把它索引到 elasticsearch 当中去,官方的 river 有 couchDB、RabbitMQ、Twitter、Wikipedia。

3)Gateway

        Elasticsearch 的gateway 代表 elasticsearch 索引的持久化存储方式,elasticsearch 默认是先把索引存放到内存中去,当内存满了的时候再持久化到硬盘里。当这个 elasticsearch 集群关闭或者再次重新启动时就会从 gateway 中读取索引数据。elasticsearch 支持多种类型的 gateway,有本地文件系统(默认),分布式文件系统,Hadoop 的 HDFS 和 amazon 的 s3 云存储服务。

4)Discovery.zen

        Elasticsearch 的discovery.zen代表 elasticsearch 的自动节点发现机制,而且 elasticsearch还是一个基于 P2P 的系统。首先它它会通过以广播的方式去寻找存在的节点,然后再通过多播协议来进行节点之间的通信,于此同时也支持点对点的交互操作。    

5)Transport

        Elasticsearch 的transport代表 elasticsearch 内部的节点或者集群与客户端之间的交互方式。默认的内部是使用 tcp 协议来进行交互的,同时它支持 http 协议(json格式)、thrift、servlet、memcached、zeroMQ等多种的传输协议(通过插件方式集成)。

相关文章
相关标签/搜索