Paper | Xception: Deep Learning with Depthwise Separable Convolutions

这篇论文写得很好。只要你知道卷积操作或公式,哪怕没看过Inception,也能看懂。

核心贡献:从Inception的思想:剥离时序卷积和空域卷积 得到启发,提出了Xception(Extreme Inception),希望能彻底解耦二者。

其他贡献:

  1. 本文提供了关于Inception的一种解释。

  2. 讨论了与现有深度可分离卷积的区别,并指出其最大影响因素是两层卷积之间的非线性化。

  3. 在两个图像分类数据库上的效果都超越了Inception V3,但参数量是一样的。

故事

Inception结构和思想

Inception结构的演进:In-Network[11] => 2014年Go